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NOMCLATURE

V ~Copy

a -wave amplitude

a - see eq. (3.1.2) p-~ Y

-(,T see eq. (2.1.8) -

A1 (T see eq. (2.1.52)

b -see eq. (B.3d)4

b - see eq. (3.1.3)n

C - phase velocity - see eq. (2.1.36)
p

Cg - group velocity -see eq. (2.1.28)

C -see eq. (2.3a.5)

C - see eq. (3.1.4)

- see eqs. (B.1), (B.2)

c -see eq. (B3.a)

cn - Jacobian Ellyptic. Function -see eqS, (C.15)

cd - Jacobian Ellyptic Function -see after eq. (C.12)

d - see eq. (B.3b)

dn - Jacobian Ellyptic Function -see eqs. (C.15)

D(E,T) -see eq. (2.1.19)

Dn(X) - see eq. (3.1a.1)

a see eq. (B3.c)

E(&,T) -see eq. (2. 1.23)

E,E(p,r)- Ellyptic Integrals -see Byrd and Friedman (1971)

F(&,T) - see eq. (2.1.22)

F(p,r) -Ellyptic Integral -see Byrd and Friedman(1971)

f(X,z) -see eq. (D.1)
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g gravity constant

G(,T see eq. (2. 1.20)

-j, see eq. (2.3b.4)
h 2 tl ae et

h st water depth

i -complex unity

I (P) - see eq. (3.1a.6)

il'i J see eqs. (3.1.12),(3.1-13),(3.1.14)
2k 3 are aenme e q 218

k -car wave number see eq. (2.3a))

K(P) - see after eq. (C.18)

1 - wave length, see eq. (3.1d.1)

z- group length, see eq. (3.1d.2)
2

z - 'supergroup length' -see eq. (3.1d.3)

-(,T see eq. (3.1.21)

P - see eq. (3.1.17)

p -see eq. (C.19)

q -see eq. (C.17)

Q ()- see eq. (2.2.5)

Q (E) - see eq. (A.2)

Q -E see eq. (2.2.9)

4 r -see eq. (B.4)

r' see eqs. (C.15)

en - Jacobian Ellyptic Function -see eqs (C-14)

t time
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T - dimensionless form of T.

in section (3.1) - see (3.1.17)

in section (3.2) - see (3.2.5)

U - horizontal velocity

u- dimensionless form of U - see (3.2.14)

V - vertical velocity

v - dimensionless form of v (see (3.2.15))

w(x) - see eq. (D.9)

x- horizontal coordinate

X- dimensionless for of .

in section (3. 1) - see eq. (3.1.17)

in section (3.2) - see eq. (3.2.5)

y - see eq. (B.5)

z- vertical coordinate

z - see eq. (B.6)

Z - dimensionless form of z

in section (3.1)- see after eq. (3.1e.1)

in section (3.2) - see eqs. (3.2.5)

Z (pr) - Jacobian Z function - see eq. (C.25)

- see eq. (3.1.10)

alga - see eqs. (2.2.13),(2.2.14)

a- see eq. (3.2.13)

a - see eq. (3. 1. 10)

0102,103 -see eqs. (3.5),(3.6),(3.7)
• ..--
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y- see after eq. (3.1.1)

rj,,r see eqs. (A.8),(A.9)

S - see eq. (C.24)

C see after eq. (2.1.4)

-free water surface

o' 27 eeeq. (2.1.7)

S( ,r), m>AI, Jm - see eq. (2.1.10)

~20 - see eq. (2. 1. 17)

8 - see eq. (2.1.8)

XJ j=1,9 - see eqs. (2.1.4_ij to (2.1.51)

I' - see eq. (3.1.9)

Pi J=1,6 -see eqs. (2.1.43) to (2.1.51)

-see eq. (2. 1. 15)

a -see eq. (2. 1.26)

a -see after eq. (2.3a.4)

T see eq. (2.1.15)

-see eq. (2.3c.6)

-see eq. (C.30)

* - induced velocity potential

0 2 .-see eq. (2.1.16)

0 (E,T,Z) , M),1, j),m -see eq. (2.1.9)

*1010 -see eq. (2.1.11)

* - dimensionless form of * 0-see eq. (3.2.5)

-wave envelope



-dimensionless form of

in section (3.1) see eq. (3.1.6)

in sect.*on (3.2) see eq. (3.2.5)

-stream function

- dimensionless form of Y'

in section (3.1) see after eq. (3.1e.1)

in section (3.2) see eq. (3.2.16)

- carrier wave frequency see eq. (2.1.8)

W rave frequency see after eq. (2.3a.4)
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1. INTRODUCTION AND ACHIEVEMENTS

The shoaling of weakly nonlinear surf ace wave groups is important to

the understanding of coastal wave climate and coastal flow regime.

In the past, most efforts concentrated on the equally important

though simpler problem of shoaling of wave-trains (i.e. monochromatic

wave groups), for details see Stiassnie & Peregrine (1980).

The first mathematical formulation for shoaling of wave-groups

was given by Djordjevic' and Redekopp (1978). This formulation is

limited to cases where the water depth is small compared to the group-

length. Equations suitable for water depths of the order of the group-

length are deduced in Peregrine (1983); combining the constant depth

model by Davey and Stewartson (1974) and the higher-order model for

infinitely deep water by D.sthe (1979).

The only available solutions are those for the shoaling of

isolated wave-packets (solitons), whtich were originally given by

Djordjevic' and Redekopp in their 1978 paper. They predict that a

soliton envelope can undergo fission only if it propagates into

deeper water. By heuristic assumptions for the evolution along the

slope, they also estimate the number of solitons emitted after a

single soliton descends from a shallower shelf. A more recent study,

Turpin, Benmoussa and Mei (1983) confirms these results qualitatively,

but not quantitatively.

To the best of our knowledge, no results for shoaling of wave

groups (i.e. modulated wave-tralns) have been presented so far. These

modulated wave-trains are of particular importance since almost every

-" 4
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wave-train will eventually become modulated due to its intrinsic

Benjamin-Feir instability. The main goal of the present study is

to throw light on the evolution during the shoaling of a modulated

wave-train and its influences on the mean free surface and the wave-

induced mean flow.

The bulk of this work is divided into two parts: the

derivation of the appropriate equations (inchapter 2), and their

solutions (in chapter 3).

The use of the REDUCE 2 algebraic manipulator enabled us to

derive evolution equations which are accurate to fourth order. These

equations are valid for any water depth, (except the extremely shallow),

as long as the slopes of the bottom are sufficiently mild. Note

": the nonlinear effects on shoaling surface gravity waves in extremely

shallow water are discussed in a recent paper by Freilich and Guza

(1984).

Two new results are presented and discussed in this report. The

first is an approximate analytical solution which provides detailed

information about the physical processes involved in the shoaling of

wave-groups. The second result is the calculation of the induced mean

flow accompanying an evelope-soliton moving on infinitely deep

water.

The attempts to include the effects of randomness into our

models have not yielded any wortwhile results. It seems that the very

recent work by Longuet-Higgins (1984) should provide a good starting

point for any future work in this direction.
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2. DERIVATION OF THE EVOLUTION EQUATIONS

2.1 Fourth Order Evolution Equations

The third order evolution equations for groups of water-waves moving

over an uneven bottom were first derived by Djordjevic' and Redekopp

(1978). These equations are valid only if the water depth h is of the

same order of magnitude as the wave length £i" In the present section

we carry their derivation one step further, to fourth order and

introducing a slght modification, we obtain a more general set of

equations which is valid when O(h/£ I) > 1. All the algebraic mani-

pulations were performed utilizing the REDUCE 2 algebraic manipulator,

see Hearn (1973).

We consider the evolution of a uni-directional progressie

grativy wave moving along the x axis on the free surface of a homogeneous

liquid with depth h = h(x) varying in the direction of the propagation.

The effect of surface tension is neglected, so the analysis applies

to gravity waves only. The fluid motion is irrotational, thus there

exists a velocity potential *(x,z,t) satisfying Laplace's equation

" xx +  zz = 0 (2.1.1)

where z is the vertical coordinate, and z = 0 is the undisturbed free

surface.

The boundary condition on the bottom z -h(x) is

-h'(x) (2.1.2)
z o
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and the boundary condition on the free surface z =(x,t) are

the kinematic condition:

Oz t + 0x x (2.1.3)

and the pressure condition

2g4+2 +2 + 02 =0 (2.1.4)

The situation where the depth varies slowly in the direction of

propagation is considered, so that properties characterizing the wave will

change slowly as well. A small nondimensional parameter C that measures

the slope of the wavy surface is introduced, and we define the new

variables

X dx
x~ d _ t] ; c2x (2.1.5)

where C is the group velocity.

g

We suppose that the depth changes on the scale of c2 so that

h h(&)with the property h'(C) 0(1).

The velocity potential and the free surface displacement are

expanded as follows:

= o ( ,T,z)+{ 1 (E,T,z)e (,T,z)e +...+c.c} (2.1.6)

4: 0 (ET)+{CI( ,T)e + 2 (ET)e +'".+c.c} (2.1.7)

x
where e f k(&)dx - wt (2.1.8)

and c. c means complex conjugate.



-10-

With c chosen to be small, the functions *(&,T~z) and

for j> 1 are expanded formally in powers of c as follows:

i (&TZ)C M (&,,Z)(2.1.9)

C m r.~ (ET) (..
mj

The induced mean flow potential 0~ is written as

*(x,z,t) C 01 (g,.r,z) + C~ 2 ()t(..1

where 0( 1 1.

Substituting the Fourier series (2.1.6) into the Laplace

equation (2.1.1) we obtain that the zero order potential satisfies:

VZO (E,t,z) -0 (2.1.12)

From (2.1.11) and (2.1.12) it follows that:

(&,T,Z) O (C3 ) (2.1.13)

Expanding the free surface conditions (2.1.3) and (2.1.4)

around the equilibrium position z -0, substituting eqs. (2.1.6) to

(2.1.10) and looking for the coefficient of e , yields respectively:

10 0 2 RC 1102 1  ~21 11 + C C11011i
z T zzzz g T

* - k2  * -ik 4 ,+0e) 0 (..4

and

2 22 2
40io +2Re [ i~ 1 ~ j k 4 iu~ iJ0e)(2.1.15)

9 T z 9z z



where 10 010 ( ,T,o), *i. *j ( ,~o), and *denotes the complex

conjugate.

From (2.1.14) and (2.1.15) it follows that the order of C

and (a) are greater or equal to 52
z

Oin (o) OWc); 2) () (2.1.16ab)

We introduce the notation

2 20(2.1.17)

The next step of the derivation is similar to that given by

Djardjevic' and Redekopp with the difference that we continue the

process to fourth order. Substitution of (2.1.6), (2.1.8) and (2.1.9)

into Laplace's equation (2. 1. 1) gives:

* =A(E,T)cs ~) (2.1.18)O(Oe Oi cosh k h

O2j2 :* = (~ cosh k(z+h) T

21 cosh kh C
g

(z+h) sinh k(z+h) - ha cash k(z+h) (2.1.19)
cosh k h

cash k(z+h)
0=1=11=2 31 =G(E,T) cash k h

- 2oskh{2h'A+(k'A Z7T)zhl

(z+h)cosh k(z+h) +- k h~hk)'A-

- hA 1 -ID .(z+h)sinh k(z+h) (2.1.20)
-F-ATT- C T
g g
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O~'L~:M(C, T) cosh k(z+h)+

41 cosh k h +

+ -A -k' ](z+li)3] sinh k(z+h)-
bC TnT 2C cosh kh
g g

kh' 2 sinh k(z+h)+
AT T (z+h cohk

+~ {(kh') [3G-2kh(2a2-1)) + kh'ar - k'a-

2(72  k' T haA-
C 1 -a T
g g

i2 k'i sigh k(z+h)
- K D-iD C -. (z+h) cs

2 Ct

+{ 1L -4' k'+2lchak' +2k -1 JAr-41cC 1-ar C

iha A~ D TT ik' D(zh 2 cash k(z+h)+
2~~ Am-. C C1  - 2 cash k h

+{- h' (+h)h cash k'DI z+h) (2.1.21)
g cosh kh

HOcash 2k(z+h) (..2
- _22 cash 2 k h (..2

3 210~,T cash 2k(z+h) F
32 cosh 2 kh C

g

(z+h) sinh 2zh)(2.1.23)
cash 2 k h

where A,D,G,F,E, and M are yet unknowni functions.

'7.
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Substitution of eq. (2.1.6) to (2.1.10) and eqs. (2.1.18) to

(2.1.23) into the expansion around z =0 of the free surface conditions

(2.1.3) and (2.1.4) gives:

C1w0 (2. 1.24)
11 9

and

W2  =g ka (2.1.25)

where 0 =tgh(kh) (2.1.26)

20 -0e0  10T 20 J AI' (2.1.27) --I20gt l9 20

0(C2)eiO C [- a4-kh(-a2)] (2.1.28)
g 2w

and

* g 21 =iwD + AT(2. 1.29)

21 220, 2 -- k2 ( ) A2  (2.1.30)

and

w F =-~ ik2 ( ) A2  (2.1.31)

1A +v 2A~ + 113  A0+ +

+ 1IA12A + ~ 2 0A =0 (2.1.32)

where

-,a -a0 +(hk)'} (2.1.33)
F 2 1 E 0 + h k ( 1 

0 )
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ii 2wiC(2. 1.34)
2 g

31 g C2L~ (1-khar) (1.-a2 )] (2.1.35)

2 C
11 =IL£2~ (a 2 ] C W/k (2.1.36)

P1 12 +13a 2- 2a4~] (2.1.37)
5 2 g a2z

2cik2  (2.1.38)

and 16= - (- 2

whcl iwka ik
g 3 iw + (+~ ) + ~ ~A

+ -(2ar
2-1)A +hwaA-

2C

i4 {3-9a2+11a 2aA 2  +
2wa5

+ [ 2kh' + k'h -2az(kh)'] A (2.1.39)
2

----------------------------------------------------------- -------------

13 21 a4
3  k1a)

O-~e E [ 3kh(a4 +2a2-5)+9a(1a AT

+ 6ikw' (1-a2)AD (2.1.40)
g

and

- 1k [-12kh( -a2 -4 3+12a) A A

a2

--------- -----------------------------------------------
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0(C4)e18: lD + p2D + v3 DT + 4DOI0 + 211 5IA12D + P5A 2D

+ D + X A + X + X !AIZAT+ X4 A2 " +

+AO20D + IA 0  + X+ +,

TTT

+ c 2 X9 A0 ffi 0 (2. 1.42)
z

where ul,...,k6 are given by (2.1.32) to (2.1.33) and
1 .- h_

g2 (2h3k3a7-6h3k3a5+6h3k3a3- 2h3k3  -'
4 2C3

5h2k2c 6+9h2k2U4-5h2k202+h2k2+ 4hkU5-

-4h 3  
0 L4+o2) (2.1.43)

[-3a+kh(3a 1] (2.1.44)2 3C3
g

A i 3

3 = {7a7-47 5+48oa3-36a+kh E-7o.8+32a 6-
2gC a

g

-25a4-18a2+18] - (2.1.45)

A. 14 = {_oh--5uo2+kho.(l-a 2 )2} (2.1.46)
4 2gCg

-2h(1-cr2) (1-kh)
(15 kha (2.1.47)

iwka 21 i'o

6 -kc 21k _ iW (2. 1.48)
6 .g

2  gCg gC"

_ g.2
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2Cik P +2[1-E hor][1-o "I +21 (2.1.49)
7 gC C • (2.1.49)

g g

x8 2 k (2.1.50)
g 

x9 = _ i (2.1.51) "?"

Combining eqs. (2.1.31) and (2.1.40) and introducing the new variable

A1 =CA + cD (2.1.52)

one finally obtains the modification to fourth order of the cubic

Schr~dinger equation

1iA + p2 A1  + .3A1 + u4A1~in + C 1151AI12A I +

1+ 2 X31E 2A1  + -...-.'

A + exA + X6A + 7A0 +
T TT t T

21

+ X=CA + C X A 0 (2.1.53)

On the other hand, substitution of (2.1.18), (2.1.24) and (2.1.11)

into (2.1.14) and (2.1.15) and elimination of C 0 yields the following

equation for
•~~ E 2 c2k2 2C p - ..

- 0+  [ P +(1-a 2 )]{!Aj.eAD*+cA*D}"

z Cg

+ 2 E riIAI-r 2 + 2ikO - ][A* -A*A ]+O0(4)

(2..1.54)

which can be written to the same order of accuracy as:
2 0  k2[2C 2w

+ - =-[ + (1-a 2 )](1A1 12 ) + 2-

~~ + 21wk a 21k]A* AA )-. [kJAIP ] - "W +_ -][ko_2£ A A* -A*A T

S1(2.1.55)

--------------------------------------------------------------
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Laplace's equation (2.1.12) and the boundary conditions (2.1.2) at

z =-h and eqs. (2.1.51), (2.1.53) at z 0 form the. system of equations

from which A and can be determined.

For the case of infinitely deep water, as it will be shown later,

the induced flow o is of order c2. For this case equations (2.1.55, and
0

(2.1.53) become respectively:

S4k
2 (.(2.1.56)

and

2wiC A 1
TT 2wkAI + __T+ - A--

1 g g 1O +
gc- T

+ 14ik3
+- -- 1 A, +A2AI +gC- IA1 2A1  +g g T --

+ 2ik 3 AA I ]- - A =0 (2.1.57)T ~ 1 1 Al10zi

The last two equations are identical to those given in

K.B. Dysthe (1980).

Note that the following typographical errors were found in Dysthe's

paper:

His equations (2.17) and (2.19) should be written (in his notation) as

follows:

r = 4k4[A[2+8ik3(AA*- A*A )-4ik3 lA[ 2 +2wk(4 -i0)
x x x x z

(Dysthe 2.17)

2i(A +A )+ Ay - -A A[ 2= - i (6A -Ax) +
t x yy xx 8 xyy xxx

+ 2iA(AA*-A*Ax) - 1 A x+ A ( x- Z ) (Dysthe 2.19)



-18-

2.2 Third Order Evolution Equations

Equations (2.1.32) and (2.1.55) constitute the following third

order set of evolution equations:

iA + A2 A~ + +1 11A 1  +uJAtA + =0(2.2.1)

ad2 10 22 2C

~i~ + gg ~ - +(1-ar2 )] ([A[ 2 ) (2.2.2)

Shallow water

For shallow water, we assume that the horizontal induced current

is uniformly distributed with depth; and then integrating equation

(2. 1. 1) yields 21
TT

-~-- (z+h) (2.2.3)

Substituting (2.2.3) for z-0 in (2.2.2) yields

=o ( + [)-=c ;k +(l-a2-):(t Al2) (2.2.4)

integrating (2.2.4) with respect to T gives

2C P1(~a) A12 + (~ (2.2.5)
f10 gh ~ C

T 91~-
g

The set (2.2.1) and (2.2.5) is the same as that given by Djordjevic'

and Redekopp (1978), except the term jiA 2 ( T~rich does not appear

in Djordjevic and Redekopp.
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In the sequel we will show the necessity of including the term

C2020(O)t in the wave-induced mean current expansion (see (2.1.11).

To second order in c the wave induced mean current velocity is given

by

= = C2 k2  2C 1 )J1

010 C -e kg (.-h 2)]!A[ 2 +C" + Q (2.2.6)
AZ g g

To find Q we introduce a lateral boundary condition of zero

averaged (over T ) mass flow which is appropriate for an impervious

beach, as follows:

hU +2k 2 [A12 (2.2.7)

where the bar indicates the averaging.

From eqs. (2.".71 aad (2.2.6) we obtain

ZwkC k2  2C • "

2C k 2 + (a2)]} (2.2.8)
Q() (1- )

g
g

Integration of eq. (2.2.5) with respect to T yields

20k22C"
"

0= (1- - [-- +(l-52)] f JA1 2 dT +Q(C)T + CQ2 (51 (2.2.9)

C-
g

The first and second terms in (2.2.9) grow monotinically, and

* boundlessley in time. Secular terms of this nature are bound to cause

trouble in higher order derivation and should be suppressed. The addition of

*_ the term c2€2 0()t to eq. (2.1.11) seems to be the proper way to

achieve this goal. Substituting eq. (2.2.9) into (2.1.11) gives
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o 2 k2 2C p f ( x [A. _ .--..

+- f(tAI= T([Adt-TKIt}(Z- I-7, -t7 t
0 + c q { d C x g o 2

C0
g

+ 2  --J 2 - ti + cQ()+ E 2 ()t (2.2.10)-"- -

xg
xo 

o -_

Thus suppressing secular terms in t we get

2Ck2 [ C + (1-"a2)] 2(kC

g~ -g--.-'.
C

Finally, substitution of eq. (2.2.8) for Q, and (2.2.11) for

* @20(') into equation (2.2.1); and introduction of the new variable

= - EA lead to the following nonlinear Schr8dinger equation for the
g

wave envelope

ac C - " 2,

i__ + 2C-C- *C c1Iip=:
g g g

2 --2" (2.2. 12) "".

- a
g

where
_ gk3  9th 4 (kh)-Ith2 (kh)+9 - (gk + ) k

1 2w 8th 3(kh) " 2U 2sh(2kh) gh-(C)';

kg

gkh gkC gk 2  (2.2.13)
2sh(2kh) + -C (2 2chz(kh)

2w --h( ~~~

= -g
2 

- g 3 +gk 3

a 2  4wsh (2kh) chz (kh) 2

9th4 (kh)- 10th2 (kh) +9 (2.2.14)
8th 3(kh) (2.2.14)
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where a = (2.2.15)

Equation (2.2.12) will be rederived in section (2.3) by means of the

Whitham equations.

2.3 Third Order Equations Obtained from Whitham Equations

We consider here the case of shallow water and recover the

nonlinear Schr~dinger equation (2.2.1) by using Whitham's modulation

equations.

(2.3a) Modulation equations

Considering the 2-D problem of wave-groups propagating over water of

slowly varying depth, the following five unknowns are usually chosen as

* dependent variables: the wave amplitude a, the wave frequency W

the wave number k, the average water depth h, and the current velocity U.

To determine these ,inknowns we start from Whitham's set of modulation

equations, Whitham (1974), p. 556. Pseudo-phase consistency relation:

a- [g(h-h) + ~_ a + O(c4)] = 0 (2.3a.1)
2sh(2kh)

Mass conservation equation:

3(h-h) +-- [h U +-~ a 2 + O(C4)] 0 (2.3a.2)
at ax
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Wave-action conservation equation:

2 - 2
3 [.# + 0([4)] + [ - + 0(=4)] 0 (2.3a.3)
3 a ax(23a-3"

Consistency condition:

ak + aw 0
- ax 0 (2.3a.4)

where a -gk th(kh)] is the linear dispersion relation,

' = a~/~k, and c is a typical wave steepness, c = O(ak).

Following Whitham (1974), p. 562 and including higher order

dispersive terms, see Whitham p. 526, (which arise from the quadratic

part of the Lagrangian L = -a-), the dispersion relation is

given by:

Sa + kU + (h-h) + gkc a (2.3a.5)
2ach2 (kh) 2a ax2

here C = (9th4 (kh)- lOth2 (kh) +9)/8th3 (kh)

Here, and in what follows, we assume that the small modulation

parameter c is of the same order of magnitude as the typical wave

steepness. We also assume, as we did in section (2.1), very mild

depth changes, having slopes of the order of c2 at most.

(2.3b) Induced Mean Flow

To make the slow variation explicit and to facilitate the

derivation we introduce the same multiple scale variables, T and

as given in section (2.1) by (2.1.5).



-23-

Rewriting eqs. (2.3a. 3) and (2.3a. 4) with the new coordinates

(2. 1.5) and averaging them over T gives:

4L 2  coat = B; W= const 2  W (2.3b.1)

Here we assume that the behavior of the solution as a function of -'

is the same as that of the linear boundary condition at x . Namely,

decaying for [t in the case of wave-packets and with a constant

period in the case of modulated wave-trains.

Again, bars indicate averaging over the appropriate domain in T

(finite for modulated wave-trains and infinite for wave packets)

and B, w are the averaged wave-action flux and the so-called carrier

frequency, respectively. Note that for wave-packets B = 0.

The carrier wave number k, satisfies the dispersion relation

(2.1.25).

Rewriting eqs. (2.3a.1) and (2.3a.2) with the new independent

variables, yields:

- { [i g(h-h)+ - 9k aZ] -U} +e {g(h-h) +
at C 2sh(2kh)

+ gka = (2.3b.2)
2sh(2kh)

[h U + a (h U +k a2 }= 0 (2.3b.3)
3T Cg 2o Za"
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Neglecting the second terms in the above equations for the time

beinxg,. we obtain:

gkC 2 hG +C G
h-h g% + f &) A + (2.3b.4)

2sh(2kh) Zca gh-(C )2 gh-(C )2
g g

gk gkC aG __C__G

U _ +___ + G+G (2.3b.5)

2a Zsh(2kh) gh-(C )2 gh+(C )z
g g

where G and G are functions of ,which emerged as a result of the1 2

integration. Now, everaging eqs. (2.3b.2) and (2.3b.3) and substituting

(2.3b.4) and (2.3b.5) yields:

gk 9 kh + gkC a2-

2sh(2kh) gh-(C 9)z 2sh(2kh) 2w

h G +C G
+gC 1g 2 =const (2.3b.6)

9gh-(C )2 3
g

2 gkC - gG +C G14 ~+ a +--- const)(2a2 3hh 72 gh-C Z2w 2s(2h gh-(C ) cnt 4 (.h7

where, consistent with the order of approximation k and a have been

replaced by k,w.

Following Stiassnie and Peregrine (1980) we assume zero averaged

mass flow (thus, const 4 0) and choose such a reference level that h -h =0

in deep water (which, in turn, sets const3 -0). Having fixed these

two constants we solve eqs. (2.3b.6) and (2.3b.7) for Gand G2 and then

return to eqs.(2.3b.4), (2.3b.5) to obtain the final results for the

induced mean flow:



2 gkC 7- 2  7__
U(T~)= 2  

4 2sh(Zkh)~ gh-(C )L-2wh (.b8
g

9h gkC C72

Z2sh(2kh) 2 gh- (C )4 Zs(2kh) (.b9

Consistent with our level of approximation we have

g~ -a7 for modulated wave-trains
=a -B= g (2.3b.10)

C
g

0,l for wave-packets

(2.3c) Nonlinear Schrbdin ger Eguation

To derive the NLS we reqrite eq. (2.3a.3) as follows

2a aa _ aa ak 2a'a aa a aa~ a2  a 2.c

aYat a t ar x a2  zx a ax

Applying eq. (2.3a.4), which gives mutual cancellation of the

second and fourth terms in the above equation, and dividing by

2a./a yields

3a + a a ( (2.3c.2)
ata a x 2 x

The Taylor series expansion of a(k) in the vicinity of k =k is

a W + Cg ( ) (k-k ) C) (2.3c.3)



-26-

Using this series we rewrite eq. (2.3c.2) as well as the dispersion

relation (2. 3a. 5):

aa 0- (- a 'ajk (2.3c.4)
t ga ax+ 2 X +2a

W W+ C (k-Q+ L( 2+ a. aa+ - (2.3c.5)

where

a1and a 2 are given. in section (2.3) by eqs. (2.2.13) and (2.2.14)

respectively.

Referring to eq. (2.3a.4) we define a phase functionT' so

that

W k i (2.3c.6)
w~j= at, ax

Substituting eqs. (2.3c.6) into (2.3c.4) and (2.3c,5) we obtain

aa a a + ('a2 'K 2-:3 )a 0 (2.3c.7)
at g ax 2'~~ 77 ax.

+ z 1~ 32 d!!2 a a 2 7 -

+t gC +T ''a a 2 a 0 (2.3c.8)

Multiplying eq. (2.3c.7) by the imaginary unit i, adding to it

(-a) times eq. (2.3c.8), and then multiplying the sum by e we get

-S* ac+ Cg + xx 1*2 0a7 (2.3c.9) . *

2ax t 9 x 2 2

where 4i a e is a complex wave envelope. Alternatively, using

the scaled coordinates (2.1.5) we obtain the N.L.S. equation

(2.2. 12).
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3. SOLU'TIONS

In this chapter we solve the. third order evolution equations

for two particular important cases. The relevant eqs. were derived

in chapter 2, and are given here again for the sake of clarity.

From the Laplace's equation (2.1.1) it follows that

+0 -h z 0 (3.1)

zz g TT

From the boundary condition at the bottom (2.1.2) we obtain

0, z z -h (3.2)

The boundary conditions at z=0 are

g0 io g _;1 T 2w2Q - z 0 (3.3)
Z *t~t(same ase (2.2.2))

WI
2C ac ~ 2(C 3 -T C

2 10 3020 C
g (same as (2.2.1))

where

gk3  9-12a2 + 13a4 2a6  (35

61 2o, 8as 3.5

=k (3.6)
2 (7kg
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and

= (-a2 )  (3.7)
3" 2w

In section (3.1) we consider the case of periodical boundary

conditions, and present an approximate analytical solution for the

shoaling of wave groups over a very slowly varying topography. In

section (3.2) we consider the case of infinitely deep water and

calculate the induced mean flow accompanying an envelope soliton.

(3.1) Shoaling of wave-groups

Restricting the discussion to cases for which the complex

wave envelope *(T, ) is periodic in r , and assuming zero averaged

(over T) mass flow in the x direction, enables the decoupling of

equations (3.3) and (3.4) (see Appendix A). For this case *is

governad by the nonlinear SchrBedinger equation (2.2.12):

_2

3C

"* C a +2C TT ~ I

with a and a2 given by (2.2.13), and (2.2.14) respectively. The
_. 2

.nduced mean flow potential is given by
"' -2 2'finT -i

' E 7F["gC gk ,

" T 2h + a (z){ b( ) e +
-. ~n=1 n"-

- 2 7rinT

+ b_n() e + Q2) (3.1.1)
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where Y is the period of 4i(E,T).

a cosh(2rten(z+.) IC y) n-1,2..(3.2n gy

2 2

2 g (3.1.3)
n 2igs 2,rneh - 2 7r1rnh

cc 9Y Cgy y C9Y

g g g

and C are the Fourier coefficients of ('1
n T

2winT- 2vrinT

(hP1z ( C W~e Q ( ) e (3.1.4)
n=l

The convergence of the Fourier series (3.1.4) was assumed to

be independent of c

The potential 20which is needed to calculate the mean

water level ;03. see eq. (2.1.27) is given by

.. ~ g k C
20 ~ bI 2  (3.1.5)

All technical details are given in Appendix 3.

A si-.pler and dimensionless form of eq. (2.2.12) is obtained

by means of the transformations

j zw5c Ix CLdx
= ~ ....~.& ~ ~ i ri 2 2

C ex -d- ; (.1.6



T 'IT; x 4 1- d (3.1.7)

which give

L~+ %+PpZ =0, (3.1.8

-g 3C _2 at
V M §-I- (3.1.9)

The dimensionless parameter Vi is a monotonic increasing function of kh,

having the values zero and (wy) 2 for kh7-1. 363 and kh-f

respectively. The statement of the mathematical problem, given by

Eq. (3.1.8), is completed by the following input condition at X 0.

(i.e. x = x.; a reference point in infinitely deep water).

ip(~o =I + 25e cos(2TT) (3.1.10)

which corresponds to a system composed of a carrier-wave and a

symmetric "side-band" disturbance.

r~t~) =.~Re~iWt4-_i[(1+2rc/wT)wt-aJ

+ 8 i[(1-2wc/wy)wt-aJIO(C2) (..1

For constant depth, pj const, it is well-known that Eq. (3.1.8) with T

in (0,1), subject to periodic boundary conditions has the following

X invariants

= fi'P2dT (3.1.12)
0

I (W* #~i*)dT (3.1. 13)
0

J 2II~ i 1t2)dT (3.1.14)
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These invariants are determined by the input condition, Eq. (3.9) so

that

1 1 1+Z * 2f j 0 (3.1.15)
1 ' 2

= 1 + (4-P+2cos2ct)-202 + 6a(.114

where

P = i~±(3.1.17)

*For varying depth, pa = (X), J1 and J 2remain invariant and are given by

(3.1.12), (3.1.13) and (3.1.15), (3.1.16), but J3is a function of X

governed by the equation,

dJ V 1
3X 7 X 2TdT (3.1.18)

0

* (See Appendix 5).

(3.1a) Three-Waves systems

The sol.ution of Eq. (3.1.8) can be expanded in a Fourier series

*(T,X) =ZD (X)e 2 inT (3.1a.1)
n c

The boundary condition at X =0, Eq. (3.1.10), gives D (0)=1;
0

iaD (0) =D(0 $ e ; D (0) D (0) =0 for n >, 2.

*Stiassnie and Kroszynski (1982) truncated the above given series and

considered only three waves systems:

1 nn
=(,X E D n(X)e~~L (3.1la.2)

n-n

* Substituting Eq. (3.lIa. 2) into Eq. (3.1.8) yields the following system

* of ordinary differential equations:
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dD
i + ;1[([D t2+4[D 12)D +ZD.j 0 (3. Ia. 3)

dX 0o 1o l 1o

i dD+ p[ (21 D 12 +31 D 11 2 - D + D D*1 0. (3Q .4dX02 1 0 3la4

Note that Eq. (3.1.13) yields D-= D 1.

For constant depth the system of Eqs. (3.1a.3), (3.1a.4) has

exact solutions in terms of Jacobian elliptic functions with periods

of order 1 in X which is summarized in Appendix B; for details see

* Stiassnie and Kroszynski (1982). These solutions depend on the

invariants J1 , J3 and on the parameter V which in turn depends on the

*water depth h and on the modulation period y .For very mild depth

*variations, where h~X o(1), we apply an asymptotic, WKB related

* approach, assuming the local solution to be that of the constant

*depth type and using Eq. (3.1.18) to determine J 3. J1 and y are

*fixed by the input conditions and J is given through 1(P) by:

dI 1

dl IP(4-P) 1(.a5
dP V, 7 ________

ln 1(2P-1)Ii)

(see Appendix 4), where

=(P 3(P) - (3.1a.6)

The initial value of 1, at X =0, where P =P 0is denoted by 1 and

is given by

10= 82[U~2 + 4(1+cos2ct)-2P 0 (3.1a.7)
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I , as well as I(P) were assumed to be of o(l) throughout the rather

lengthy derivation of Eq. (3.1a.5). In all our examples we choose

(y = 2nw - ) Po=2, corresponding to the. fastest growth-rate of

the Bendamin-Feir instability.

(3.1b) Numerical Verification of the asYmtotic solution

In order to appraise the relevance of the asymptotic solution

given in the previous section, we compare ies results with those of .-

a numerical solution of the system of ordinary differential equatio%

(3.1a.3), (3.la.4).

Fig. 1 shows I=I(P) for four initial values of I =1(2)
0

(I = -0.04, -0.01, 0.04 and 0.1). The broken line represents the

asymptotic solution and was obtained by numerical integration of

Eq. (3.1a.5). The solid line was obtained, by substitution of

the results obtained from a numerical solution of the system of

O.D.E. (3.1a.3),(3.1a.4) into the expression

I(P) = 21D 11
2({D1 1

2 +21DO1 2-P+2[Do[2cos[2(arg D1-arg Do)]1 (3.lb.1)

The numerical solution of the system of O.D.E was obtained

using a trapezoidal method and assuming the P(h(X)) = 2+0.2X.

Note that the assumption III <<, which is necessary for the

asymptotic solution to the valid, imposes a restriction on the

range of variation of P (P=2.8 corresponds to w2h/g=4).
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In Fig. 2 we show three parts of the exterior group envelope

1*(O,X)l as well as the interior group envelope 1*(&,X)I for the

input conditions a = 0, R 0.158 (I = 0.1).
0

Here again, solid lines represent the numerical solution

of Eqs. (3.1a.3) (3.1a.4) with P = 2+0.2X while the broken lines

correspond to results obtained by the asymptotic method, utilizing

the relation:

[b(T,X)12 = {-21+2(4JI-P)z-7z2+[S(21+2Pz-z 2 ) +r1

+ 4zcos2nT]2 [8i (3.lb. 2)

where z is given in Appendix B.

The thre parts shown in Fig. 2 are for P =2, 2.44, 2.75

for the asymptotic solution compared to P in (2,2.03), (2.44,2.49),

(2.75, 2.81) for the numerical solution of the 0.D.E respectively.

The agreement between the two methods of solution, as seen in both

the above figures is rather encouraging and seems to indicate the

validity of our new asymptotic solution of the system (3.la.3)(3.la.4)

Nevertheless, one still has to answer the question if, and to what

extent, the system (3.1a.3,4) itself is a reasonable substitute

for the N.L.S. equation. For constant depth Stiassnie and

Kroszynski (1982) show a good quantitative agreement in the length

of the modulation-demodulation cycle and only a qualitative

agreement for the amplitudes. A similar trend can be seen in Fig. 3, which

compares to numerical solutions, for for the N.L.S. (3.1.8) - dotted

line, and the other for the system or O.D.E. (3.1a,3,4) - solid line.
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The input data in Fig. 3 is r, = 0, g = 0.1 (1 = 0.04) and

the variation P = 2 + 0.2X is assumed; Both the exterior and interior

group envelopes are drawn.

W2e believe that our much-simplified asymptotic solution is not

over-simplified, and is able to produce quite a few results of

qualitative, and maybe even semi-quantitative relevance, which

enable us aome new physical insight.

(3.1c) On P and I

One fundamental property of the asymptotic solution is that

it depends on P and I solely. Given the input data a, S (and
0

P =2), 1 is determined by Eq. (3.la.7). Then, integrating Eq.
0 0

(3.1a.5) from P to P the parameter I(P) is found, and the solution
0

given by Stiassnie and Kroszynski (1982), is locally applied.

Fig. 4 gives the relation between P and nondimensional

local water depth k h, (where k w2 /g is the wave-number in_1

infinitely deep water), for y = 2Tr P is a monotonic decreasing

function having the values infinity at k h = 1.195 (kh=.363)

and 2 for k 0h . The input value 10, (for P =2) dependence

on a and a is shown in Fig. 5... Note that different combinations

of a and 0 give the same lo, and thus basicly, the same solution

for any P.

". .I
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(3. Id) Group envelopes

The free-surface of an (unstable) shoaling wave-train, displays

three distinct length scales: ZI - the wave length; Z - the modulation

or group length; and Z3 - the modulation-demodulation, group-envelope,
3

or maybe best 'supergroup' length. These three lengths are given by .-

Z, = 2r/k (3.1d.1)

221r-c [W. (3.1d.2)g

-29

(Cg)3  ln 2P2 (4-P,2  (".
- (2P-I)I , (3.ld.3)

3 AP t,,(4-p)

see Fig. 7a

It can easily be seen that in the range of depths where the asymptotic

solution applies, k h > 4, Z I and Z 2 remain almost constant. On the

other hand, 2 which depends on P, exhibits quite a remarkable variation
3,

as shown in Fig. 6

In Fig. >, we show the variation of Z3 as a function of the
.3

depth k h for four different input data I =-0.04, -0.01, 0.04, 0.1. For
0

I < 0, 9'.3 decreases with decreasing depth, but for I > 0 - 3oo 3 "

increases with decreasing depth up to a "critical depth" (corresponding

to I = 0) and from there on starts to decrease.

Fig. 7 shows the group envelopes (dashed line) and wave

envelope (solid lines) at a fixed instant for c = 0.2, at the following

I- .? .
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four locations: (-) infinitely deep water, P 2, 1 0..1;
0 0

(b) kjh = 11. 2, P 2.2, 1 0.052; (c) kh. 5.7, P 2.45, 1 = 0.01;

(d) kf h = 4.2, P 2.75, 1 = -0.028.

In Fig. 7 a we have added a portion of the 7ravy-surface (th.n

solid line) as well as the lengths t Z and 23 Note that the super-

groups (namely: the exterior and interior group envelopes) are fixed

in space, while the wave envelope moves YY..th group-velocity and the

waves themselves with the phase velocity. Similar sketches to Fig. 7

were obtained for the other cases given in Fig. 6

In order to complete the picture 'or shallower water depth we

present in Fig. 8 the group envelopes at five locations:

P = (2,2.05), b:(2.32, 2.63); c:(17.7, 22.8), d:(-22.4, -17.5),

e:(-4.i,-3.9), as obtained from a numerical solution of the system

(4.3a,b) for the same input data as in Fig. 7 assuming IA 39.47-10X.

The results in Fig. 8 indicate that L. continues to shorten
,3

and that the intensity of modulation decreases.

(3.le) The mean flow field

We express the mean flow U = t~o/ax = -31Vaz, v = ajo/az=aTfax

through the stream function 'T'
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3i

(IDo1 2+21D I 2 )Z + -"

~(D*D+DD)s(2CZ+R))cos(2TI) 2 -1

_g_ sh(2R)- chCZL) 41Tw3 cg, 2W Cg g ...
g

a2 ID1 ( sh(4 (z+H)) cos (4"T)
+ constant (3.le.1)

-n---sh(4H)-2ch(4),
2ireC

g

where Z = itez/C y , H wh/Cgy and T = e-2w3y/g 2 are dimensionless
g

quantities. The constant in Eq. (3.1e.1) is chosen so that T = 0

at the bottom. The mean free surface C is given by Eqs. (2.1.16)

and (2.1.27).

The stream-function T(T,Z) as well as the mean free-surface

for cases a, b and d of Fig. 7 are presented in Figures 9 , 10.. and

11 respectively. These figures demonstrate the rather complicated

structure of the wave induced mean flow field.

Some of the main features are: (i) the mean current, which

is shown in part (b) of the figures, as well as the mean free surface,

in part (c) exhibit a somewhat cellular structure influenced by the

wave envelope variations; (ii) a dominant adverse current appears

underneath the high waves and a much weaker, positive current (in the

wave propagation direction)under the low waves, for the shallower cases

the positive currents almost disappears; (iii) the magnitude of the

maximum adverse currents at the free surface is almost the same for
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all three depths (kwh , 11.2 and 4.2); (iv) one can notice the

tendency of the flow fields to become more uniform in their lower parts

and on the sides of the supergroups (where the modulation amplitudes

get much smaller); (v) there is a set-down in the mean free surface

accompanying the peaks of the wave envelope and a smaller set-up

accompanying their troughs.

(3.2) The-induced flow accompanying an envelope soliton

We consider here the case of infinitely deep water. In this

case we assume that the induced mean flow o is of order £2
0

4 (10 = (); 0 = 2 0()). For infinitely deep water, system (3.1)

to (3.4) becomes:

.10f + 0 = 0 -< < z < 0 (3.2.1)... zz 9 zTTI

L r 1o =0 (3.2.2)

-*O = k(1 I2) z = 0 (3.2.3)z :~

- - - -2k 3II 2' ' - = 0, z 0 (3.2.4)

Introducing the dimensionless variables

2

• ~~x =-kc ::2::

(3.2.5)

Z ckz

0 _- .-
E(AW 10, C
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Note that X, T, Z and 4 in the present section are slighly different

from their previous definition.

System (3.2.1) to (3.2.4) becomes

t. + 00(326ZZ TT (3.2.6)

lir =0 (3.2.7)
mZ

= (*2),~0 (3.2.8)

i -+_ + [[ 2 ,f O, z = 0 (3.2.9)

One well-known solution of equation ('.2.9) w'hich decays at T = +0

(x = +0 ) is the envelope soliton, given by:

I(X,T) = sech(FS T) eixl2 (3.2.10)

Substituting (3.2.10) in (3.2.8) yLelds

Z {sech2(r2 T)} , Z 0 (3.2.11)

Equations (3.2.6), (3.2.7) and (3.2.11) define a Neumann problem

in the lower half plane, which was solved utilizing the Fourier transform

method, with the following result.

"= T C (z) T2 +(Z) 2j 2  (3.2.12)

where

a -(11-n) (3.2.13)i ~~~n ..-,,
Ii42
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All technical details are given in appendix 6. Let U and V be the

* induced mean flow velocity components in the directions x and z respectively.

* From (3.2.12) and (3.2.5) it follows

Uk u --- )[ ) )()-3T 2 ] /[T2+(Z-an)2]3 (3.2.14)
n=o t

Vkv= )2  -(Z (3.2.15)
CW n=0O

The dimensionless stream function is given by

_ 2 T2 - (ZC n2

c(x,z) = k = + (3.2.16)
n-0 [TZ+(Z-a)212

n

Note that Z 0 - 2  I and that the first term on the r.h.s. of
n=O

eq. (3.2.16) was chosen to render '(0,0) = 0. The streamlines of the induced

mean flow field are shown in Fig. 12, the total flux, per unit width,

* involved in this flow is given by

q = Y(o,0) - '(0,O) = C (3.2.17)

This value is equal to the Stokesian mass transport at the peak

of the wave packet, as it should be.

"'7
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4. CONCLUDING REMARKS

The main result of the present study is the development

of an analytical solution which is able to provide detailed

information about the physical quantities involved in the

shoaling of wave groups.

The quantities include: the variations of the mean free

surface (also called set-up and set-down); the induced

mean flow; and the supergroups (group of groups) which to our

knowledge have not been discussed in the past.

The improvement in our understanding of the above mentioned

quantities is of practical importance since it is believed that

they are related with such phenomena as surf-beats, longshore

cellular structure and Harbour resonance.

-.



Appendix A: Decoupling of eqs. (3.3), (3.4) for periodical boundary

conditions

if ~Pand are periodical of period y, the solution of (3.1)

to (3.7) is given by:

dx

= (--~~) e [ g D W~ +

00 2rinT 2T2winT

+ {D(~ e + D ()e I(A.1)
n=I -n

where a 2 is given by (2.2.14).

Q WT~) + Q2(Q) + Z a (z)( b (E)e +

-2nffinT

+-b ( )e }(A.2)
-n

Substituting (A.2) in (3.1), and using the b.c. (3.2) yields

cn- 2w(n+h)

a =coshr I n =1,2,... (A.3)
n CgY

(same as (3.,1.2))

From (A.3) and the b.c. (3.3) we obtain

b (9 ~~~ ~
bi Z( w ng2v S. rwe1-ln 2irn Zwnr&ii (A.4)

[~g Coh g (same as (3. 1.3))
ccY g Y LCY

where C Q) are the Fourier coefficients of '1

21rinT -ZitinT

1 P12  Z {C n(&)e Y' +C-(&)e Y~ 1(C (O) < O(C2)) (A.5)

T n=1 (Same as (3.1.4))%
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Substituting (A. 3) and (A. 4) in (A. 2) and differentiating twice

with respect to T yields:

2r inT -[ inT

CO C2 2 1C (e Y + C (0)e

z~g 2C() n -n (A.6)
jz-O 1 2IraEc Cc

g g

Thus from (A.5) and (A.6) follows the relation

2irinT -2lrinT

010 TT rjbp12 + E r n-rl)tc n(0e Y C-ne Y A7
10 -O T n--2e I (A7

where -22

2w (A.8)
1w ( 2- r F-- - t h Y

g g

C- 2 2
J7 n (A.9)

2w(1- thEmh) , n 23,.2 Wr Ciy

-2It can be easily seen that r -r1< 0(c for all n. On the other

hand C (Q) are Fourier coefficients. Thus there exists a IN, such that

2nminT -21rinT

n n -n

ahd then (.O
Z~r:Lnr -27rinT

E (Q -r){ C e + C e Y" < 0(c)
nN nn -ni
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For a :

r -r <0(e 1) (A.1)

From (k. 7), (A. 10) and (A. 11)'we finally obtain the relation

=r114u12  + 0(C) (A.12)

And using the relation

C-
2 2

r ~ -1O( (A.13)
2w(1 C

g

which can be easily verified, we obtain

T +2-i 0(e) (A.14)

where g

r = -(A.15)
g

Equation (A.14) is identical to (2.2.4) (Ak i- ') which
2we

was obtained for the case of shallow water. Integrating (A. 14) with

respect to T yields

010 rI'1 2 +- Q(E) +I O(E) (.6

From here we proceed in a similar way as in section (2.2) and

obtain that Q()is given by (2.2.8), '20 by (2.2.11), and Ql(&)
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Finally substituting * , Q and in (3.4) we obtain

that the wave envelope ~,)is governed by the nonlinear Schrdedinger -

equation (2.2. 12).

C1 -2 -2
-Rs + C'- ea

2C 3E E 2C TT C

where a I and a2 are given by (2.2.13) and (2.2.14) respectively.

For deep water (ch >> yC ),eqs. (A.8) and (A.9) become
g

r 2- (A. 17)

and 2

respectively, and one can easily verify that =1 0(c).

Z=..
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Appendix B -Solution ofEquations (3.1a.3) and (3.1a.4) fir constant depth

Tnput data: Ji i P; I -J

1431

- 1 7 41 -~

c1 = ~~ (4J1-2)11-[2.] )] }(B1

C2 P [ 1-(1+ ?)](B.2)

*c =max(c 1 ,c2) d min(c1 ,c) (B.3a,b)

2
e=2P; b -(4-P) (B.3c,d)

r2 -1 e-b c-d (B.4)
e b

* = 2-I21'2 *7eb X (B.5)

*cd(y,r) is a Jacobian elliptic function of the argument y with modulus r.

Z e-b(-cd) (B.6)

VT)1 = 
1 2 ; D0  i/T7 (B. 7a,b)

cos[2(arg 1 a D D) = 1. 5Z2 - (P-2J 1) Z(.cd

I- arg D2 ((J7cz)
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Appendix C - Derivation of the Equation for J3(X)

Let u~s suppose that u is a given function of X. Differentiating

equation (3.1.8) with respect to T and multiplying by *T we obtain

a2  '

'I,-T + T 'T +11(x)" *1z1*r 12 + V(X)'jT*I*12T=0 (.1)

Subtracting from (C.1) its complex conjugate and dividing the result

by p CX) yields

al* z12
-~-T "I + (*T-* ) f*j2  *-*,) = 0 (C.2)

ax + 11 (X) aT ~T'T)T T

Multiplying equation (3.1.8) by $* taking the complex conjugate

and substratting it from the resulting expression, we obtain

2 II+ - T**-*p*p) = 0 (C.3)ax.--

Multiplying (C.3) by 112 yields

i[ II (-T ( '*r.*-*1) = 0 (C.4)
2 aX "aT T T

Subtracting (C.4) from (C.2) gives

i a ~ ~i 2~ a~ilfl4i I'~'T'T1 1 12_ +i a (- ) +lT 2 (TT,_TT'**)}=0 (C.5)11(x--- "-X T ax 3T I' W TxT

which can be written as

a uTI 2 iTI a (+TaTT TuTT) -+i { 3 Iul}+ ++ {. +

+ lV(,,-,Tu*)} = 0 (C.6)

+" 1
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Integrating (C.6) with respect to T from 0 to 1, and using the

fact that 4'is periodic, with period 1 we obtain:

Ia +i l42 IT 0 (C.7)
0 0

which can be written as:

WXJ3x (X) 777f '* I2dT (C.8)
0

wher J M f (I'P14- 2 .H' [2)dT.

Substituting the approximate solution (3.1a.2) into the right

hand side of (C.8) we obtain the following approximate equation (orJ

aJ 3 (x)

8w2  ZW (C.9)

where z(X) =21D 11
2.

Integrating eq. (C.9) yields

J(X M J (0) + 8wrI .~ z(X)dX =J 3(0) + 8wrf dp ~ (C.10)
330 Vi 1.1 2

and using (3.1.17) one finally obtains

P
J (P(X)) = J(P) f -z(P)dP (C.11)

0

Equation (C.11) is an integral equation for J (P). If we suppose that

2
J 3  Pr'.AJ varies in such a way that J1_J 3 <<I then z(P) may be replaced by

the solution for constant depth (B.6) so that .. \
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J3 (p) = j3 (P) P P 2C(4-P)(1cd.12)
p 7P-(4-P)cd' dP
0

where cd is the Jacobian ellyptic function with argument

y =4 L- x (C. 13)

and modulus r given by

2 (e-b)(c-d) = 1 4 (4P-2) (JJ 2 + 0 2 (C.14)r = I eb =I-4p2(4_e)2 (3-J. 1 (3-Jl )  (.4

e,b,c, and d are given in Appendix B.

After some algebra, &d using the relations

cn
cd dn .. -

cn2 = 1-sn 2  (C.15)

dn
2 = 1-r

2sn2

2 2
r' =1-r

where en, dn and sn are Jacobian ellyptic functions, equation (C.12)

is written in the form

P r2 2 "-"Jq(P) J(P f b sn )dP (C.16)

3(e0 P b l--qZsnLd
P

where

q2 = - (c-d, (C.17)

The integrand in (C. 16)is an oscillatory function of the argument y,

and if we again apply the very mild topography assumption, it is justified

to replace it by its average as follows

eb2r'2 .n I K (r')2eb sn2

e-b K-b 1-q=sn

)2eb sn2 (y) dy (r')2eb j(p,r)(e-h)K 1lq2sn (y) '-b (C.18)q(.-rZ.
o) f I e-
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where 4K(P) is the period of the sn Jacobian ellyptic function,

Z (p,r)- is the Jacobian Zeta function and

P sinfl(a (C. 19)r

In order to obtain (C.18), equation (414.02) from Byrd and

Friedman (1971) was used.

Substituting (C. 18), into (C.16) one obtains, after some algebra

P
J() J(P 0) f Ve- J (p,r)dP (C.20)

P
0

or

-v' Zj(p,r) (c. 21)

where.

snp 1- -=6 + 0 (62) (c.22)e

2 (e-b)a,(.3
eb

46 =(c-d) P(P J-Jj) << i (c.24)

Finally, using the fact that sin zp =1+0(d), and r 2=110(0), we

replace Z (p,r) in (C.21) by a simpler expression as follows.

The function Z (p,r) is defined by

-EZ (p,r) E E(p, r) - F (p )(C.25)

*Here R, K, E(p,r) and F(p,r) are the Ellyptic Integrals. (See Byrd

and Friedman (1971)).
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Using the following limiting values (.6
tim E(p,k) -E(k) (.6
sin$-)-l
lin E (r)=1 (C.27)

J-11

the function Z (p,r) is approximated by

Z (p~r) 1 F~p = K-F(p,r) F(w2,r)-F(p,r) =F(4,r) (C.28)
SK K K K

where

Co 1 sinp .f(r')(1.rZsin~p)}. 1 I 1-rz C.9
CO t 1-r-'sin'p V 1 -r~s i np (

see Byrd and Friedman (1971) Eq. (116.01).

From (C.22) and (C.23) we obtain

e (C.30)

UsingEq. (9029l)on page 300, in Byrd and Friedman (19? 1) yields

F(jl,r) ln )+ 0 (r2)= L11(-Fe + 0(r' 2 ) (C.31)

Finally, replacing K by its approximate value

K ln(-) r 1 (C.32)
r

(see 112.01 page 11, Byrd and Friedman (1971), we obtain from (C.28),

(C.31) and (C.32) the following equation for J3M

/ 4 b

ln( _)V

J(P) lb(C.33)

P 2 4

In.
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The above equation is written, using (B.3) as

1.+ 4-P)
7P

~JF)1 /(4-P)

- - =-2 LP(4-P) - (C.34)

Finally, introducing

1(P) = J(P) -
(C.35)

11

'I(F) -~(4-P) 7P i(~ (C.36)

i](2P-1)1(P)
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Appendix D -Solution of the Neumann problem (3.2.6). (3.2.7)._(3.2.11)

We consider the problem

41 + 0 =0 (3.2.6)

3Aim. ZD =0 (3.2.7)

0 z TT {seci (F2 T)),,. z 0 (3.2.11)

Equation (3.2.6) with the boundary conditions (3.2.7) and (3.2.11)

constitute a Neumann problem, which is solved f or the induced flow.

Substituting the following Fourier Transform of the induced flow

potential function

f (X,7,) = f reiT(X,T,Z) dT (D. 1)

Into (3.2.6), (3.2.7) and (3.2.11) yields

f(k, Z) _X2f(X,Z) 00 < Z < 0 (D.2)

fz(X,O) fI- re -ZO4sech2r/2T] dT, Z=0 (D. 3)

lrn f (A,Z) =0 (D.4)

The solution of (D.2), (D.3), (D.4) is given by

1 i T(D. 5)
2v'Z) [sc-72Id
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Then, by means of the inverse Fourier Transform, we obtain

-00

0 (X4T Z f e l"ZIe' sech2v'21)E f dTJ~/IdA)d (.'
-0 -00

integrals, from -~to 0, and from 0 to ,yielding the result

- IZ a ec-vt)d (D.7)
0z (X,T,Z) =-2r (t-T)4ZI a T~sc22]

Finally, integration with respect to Z gives

0(.Yj,Z) -4w fln[(,r-T)2+Z2]-a [secb22T~dT+ Q(X,T) (D.8)

From equation (3.2.6) it follows that

Q(XT) a(X)T + W(x) (D.9)

and imposing the condition

lim. * 0 (D.10)

yields that Q is only function of It.

Q W(O) (D.11)

On the other hand, replacing T (D.8) by the new variable

r-.T, and integrating twice by parts, yields the result
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The integral in (D.12) is evaluated by considering the complex

variable TITT+U and the path r R given in figure below. The integrand

has the following infinite number of poles in thet upper half plane.

TI I.Z(Double) (D. 13)

Z =-T +1r (k +j) =,2. (D. 13)

The path r is taken between two poles, as shown in the figureR

Z
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The integral along the half circle tends to zero when R

and after some algebra we obtain the result:

0 X ,Z 2 sech2 C2 (T- U)J + E I + W(x) (D. 14)4 j=O Z+7)

where Z. is given by (D.13)

From the identity

sech.2l Z (D.15)
k--c[ + iff ( ±k)]2

(See eq. (3.64) in Carrier et al. (1966)), we obtain the final result

EZT{Z- ( +k)}
O(X,TZ) E+ w(X) (D.16)

kmO [T2 -+{Z-. (I+k)1 2 12

r2L
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